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Abstract In this work, a new 3-dimensional visco-

plastic model based on a previous plasticity theory is

presented. The proposed constitutive model antici-

pates the contribution of the main features of plastic

behavior, such as yielding, rate effect, isotropic and

kinematic hardening, through a new approximation of

the constitutive equation with a viscoplastic term, as

well as a new consideration of the functional form of

the rate of plastic deformation. A high accuracy

simulation of shear experimental data at various rates

and temperatures for a variety of materials, as well as

the sign inversion of normal stress has been postulated.

Introduction

Due to the fact that yield phenomenon is a main feature

in soft metals, a large amount of theoretical work has

been developed for the elastic–plastic behavior of

polycrystalline solids. However, the corresponding

constitutive equations for large deformations of these

materials are still in a state of development. Among the

various trends which undertake to formulate a com-

plete set of constitutive equations for plastic behavior,

many different approaches have been established.

Some of these differences cause limited results on the

related phenomena, but others are of important conse-

quences for the whole formulation which occasionally is

attempted. One of the main differences among the

various contributions concerns the multiplicative

decomposition of the deformation gradient tensor F
[1]. According to this widely accepted assumption the

tensor F, which describes the way a material element

dX deforms in a line element dxin the present state, is

separated into the elastic and plastic parts Fe and Fp

correspondingly. These two tensors lack an explicit

determination in the present configuration of the

material elements, because each of them is referred to

different configurational states. To avoid this problem a

detailed description has been developed by Rubin [2, 3]

who extended the ideas by Eckart [4] and Besseling [5].

In his work, an evolution equation has been specified

including the relaxation effects of plastic deformation

without introducing a plastic deformation tensor explic-

itly. This treatment can be made by introducing, at each

material point, a vector triad mi ði ¼ 1; 2; 3Þ, which

models the orientation and elastic deformation of the

crystalline regions relative to a reference lattice state,

determined when the material is macroscopically stress-

free. Since the vectors mi characterize the atomic

lattice in the present state, they are not directly

connected to the material line elements dXor dx, but

they can be used explicitly as a basis for tensors referred

to the present configuration as well. Material anisotro-

pies characterized by functions of these components are

explicitly specified in the present state and conse-

quently are trivially invariant under superposed rigid

body motions. This formulation is in accordance with

the ideas argued by both Besseling [5] and Mandel [6]

that the rotation and deformation of the atomic lattice

is not directly related to the total deformation, relative
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to the reference configuration of a continuum material

element. Following this analysis, Rubin [2] avoids the

introduction of separated spin tensors, and their con-

stitutive relations, for expressing the corrotational rate

of internal quantities necessary in describing various

aspects of the plastic phenomena. These special entities

called ‘‘spins’’ have extensively been used and subse-

quently formulated by Dafalias [7–10] in a different way

than the common used material spin, which is related to

the kinematics of deformation. In a recent work

Dafalias [11] has systematically evaluated the concept

of plastic spin based on classical hyper-elasticity, yield

criteria and invariance requirements of the constitutive

functions under superposed rigid body motion. The

most decisive condition for the validity of a theory is the

experimental evidences. Cho and Dafalias [12] have

undertaken the concept of spin on the experimental

data by Montheillet et al. [13]. In the present work an

effort will be made to apply Rubin’s [2] plasticity

theory, on the same experimental data, and indirectly to

compare the completeness of the different formula-

tions. In doing so, at the beginning we will represent

briefly the set of constitutive equations on a simple

shear deformation made by Rubin [3], and going on we

will solve the proper relations by introducing two

modifications for a more suitable description, of the

rate-dependent constitutive equations, and the func-

tional form controlling the rate of plastic deformation.

Rubin’s constitutive equations for simple shear large

deformation

As mentioned in the introduction, the elastic defor-

mation of each material point has been formulated

through a triad of vectors mi, that are related to the

dilatation, distortion and orientation of the mean

atomic lattice in respect to some reference state. In

the reference configurational state associated with the

material, when it is stress-free, this triad of vectors

constitutes a set of orthonormal vectors, implying that

the corresponding metric tensor mij equal to

mij ¼ mi �mj is given by

mij ¼ dij ð1Þ

In order to define the change of the volume element

we are referred to, the dilatation Jm (which is unity in

the reference lattice state) is introduced and given by

Jm ¼ m1 � ðm2 �m3Þ ¼ ðdet mijÞ1=2 ð2Þ

Moreover, to define the distortional measures of the

elementary volume, Rubin has introduced another set

of orthonormal vectors m0i defined by the equations

m0i ¼ J�1=3
m mi with m0ij ¼ m0ij

0 ¼ J�2=3
m mij ð3Þ

It is easily then extracted that

det m0ij ¼ 1 ð4Þ

The microstructural variable mi are determined by

an evolution equation of the form

_mi ¼ Lmmi ð5Þ

where the second order tensor Lm, corresponds to the

elastic velocity gradient and is assumed to be separated

additively into the form

Lm ¼ L� Lp; Lp ¼ Dp þWp ð6Þ

where L and Lp, are the velocity gradients of total and

plastic deformation, respectively, and Dp;Wp are the

symmetric and antisymmetric parts of the velocity

gradients need to be specified by constitutive

equations. It follows from (2), (3), (4) and (6) that

_Jm

Jm
¼ D � I; D0 ¼ � 1

3
ðD � IÞI;

_m0ij ¼ 2ðD0 �DpÞ � ðm0i �m0jÞ
ð7Þ

where D0 is the deviatoric part of the corresponding

symmetric part D of the total velocity deformation

gradient tensor L. In extracting the above relations the

plastic incompressibility

Dp � I ¼ 0 ð8Þ

has been used, while symbol � denotes the tensor

product between two vectors,and I represents the

identity tensor.

Concerning simple shear deformation in the e1 � e2

plane of a rectangular Cartesian base vector ei with

the initial values of the atomic lattice vectors mið0Þ to

be equal ei, then it follows that m1;m2 will remain in

the e1 � e2 plane while m3 will remain always parallel

to e3. The velocity gradient tensor specified to describe

such a deformation is given by the relation,

L ¼ _cðe1 � e2Þ ð9Þ

where c(t) is a measure of shear strain. The symmetric
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and anti-symmetric part of this deformation will be

given subsequently from the relations,

D ¼ _c
2
ðe1 � e2 þ 2 � e1Þ; W ¼ _c

2
ðe1 � e2 � 2 � e1Þ

ð10Þ

The current values of vectors mi may be expressed

in terms of a rectangular Cartesian deformation tensor

Fm relative to the initial values mið0Þ or the base

vectors ei of the reference lattice state as follows:

mi ¼ Fmijmjð0Þ ¼ Fmijej ð11Þ

For the simple shear deformation with m3 always

being parallel to e3 the following components of Fm

will be 0,

Fm13 ¼ Fm31 ¼ Fm23 ¼ Fm32 ¼ 0 ð12Þ

Based on the evolution Eq. 5 for mi and the additive

decomposition Eq. 6 for L we obtain,

Lm ¼ _Fm � FT
m ) _Fm ¼ Lm � Fm

_Fm ¼ ðL� LpÞ � Fm ¼ ð �Dp �WpÞ � Fm
ð13Þ

consequently the time derivatives of the non-zero

components of Fm will be given from the following

equations:

_Fm11 ¼ Fm11ð�Dp11 þ Fm12ð _c�Dp12 �Wp12Þ
_Fm22 ¼ Fm22ð�Dp12 þWp12Þ þ Fm22ð�Dp22Þ

_Fm33 ¼ Fm33ð�Dp33Þ
_Fm12 ¼ Fm11ð�Dp12 þWp12Þ þ Fm12ð�Dp22Þ
_Fm211 ¼ Fm21ð�Dp11Þ þ Fm22ð _c�Dp12 �Wp12Þ

ð14Þ

where Dpij, Wpij the rectangular Cartesian components

of Dp;Wp relative to ei which may be verified from

the corresponding flow rules.

Based on thermo-mechanical principles, the dissipa-

tion of the plastic work, and that materials have a

plastically orthotropic behavior, Rubin [2] introduced

the following flow rule for the symmetric part of the

plastic velocity gradient tensor Dp,

Dp ¼ CpDp ð15Þ

where Cp is a non-negative function expressing the

rate of plastic deformation and needs to be specified,

while Dp is its subsequent direction which for the

simple shear case ðJm ¼ 1;m0i ¼ miÞ has the following

form:

Dp ¼
b11

2l
½T0 � ðm1�m1Þ�ðm1�m1�

1

3
11IÞ

þb22

2l
½T0 � ðm2�m2Þ�ðm2�m2�

1

3
m22IÞ

þb33

2l
½T0 � ðm3�m3Þ�ðm3�m3�

1

3
m33IÞ

þb12

2l
½T0 � ðm1�m2Þ�ðm1�m2�m2�m1�

1

3
m12IÞ

þb13

2l
½T0 � ðm1�m3Þ�ðm1�m3�m3�m1�

1

3
m13IÞ

þb23

2l
½T0 � ðm2�m3Þ�ðm2�m3�m3�m2�

1

3
m23IÞ

ð16Þ

where the material constants bij (i,j = 1,2,3) character-

ize the particular plastic response of the tested spec-

imen. For isotropic plastic relaxation all values of bij

are taken equal to unity, otherwise different values of

these parameters should be endorsed to obtain aniso-

tropic plastic behaviour. The description introduced in

this work is going to be applied on such materials,

which at small deformations respond isotropically, but

at larger strains an orthotropic plastic response is

observed. We have noticed that at small stretches the

solution of the constitutive equations is irrelevant of

the selection of bij values, leading to identical results.

At the last chapter of this work we will apply a

simulation for identical values of bij to verify this result.

Taking this fact into consideration in our simulation

procedure, we adopt different values for bij even at the

initial deformations.

To complete the constitutive description, Rubin [2]

has used the hyperelastic formula for the deviatoric

part of the developed stress T0, which in the case of

simple shear deformation the corresponding relation

has the form

T0 ¼ Gðmr �mrÞ �
1

3
rrIÞ ð17Þ

with G being the shear modulus.

After that, in order to construct a constitutive flow

rule for the anti-symmetric part Wp of the velocity

gradient tensor Lp Rubin based on the subsequent

observation.

The time evolution of the directions mi in the case

where the material spin W vanishes is given from the

equation

_mi ¼ Lm �mi ¼ ðL� LpÞ �mi ¼ ðD�DpÞ �mi �Wp �mi

ð18Þ
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This formulations mean that the orientations mi will

remain constant if also Wp vanishes, and they will be

aligned with the principal directions of ðD�DpÞ if mi

are orthogonal vectors. This remark will cause the triad

mi to rotate until D and Dp have the same principal

directions. Supposing that this behavior will occur

asymptotically even in the case where Wp does not

vanish from the beginning of plastic deformation, in

such a way Rubin specified a flow rule for the plastic

spin as follows:

Wp ¼x12½Dp � ðm1 �m2Þ� � ½m1 �m2 �m2 �m1�
þ x13½Dp � ðm1 �m3Þ� � ½m1 �m3 �m3 �m1�
þ x23½Dp � ðm2 �m3Þ� � ½m2 �m3 �m3 �m2�

ð19Þ

where constants xij control the rate at which this

asymptotic transition takes place.

As Rubin proved in his work [3] in the case of elastic

response, the elastic deformation tensor Bm and the

deviatoric stress T0 are independent of the original

orientation of vectors mi relative to the reference

configuration. This leads to the conclusion that the

introduction of vectors mi can be fairly applied to

isotropic materials in the elastic region. However,

when plastic response emerges, the rotation of the triad

vectors mi is strongly dependent on their initial

orientation, and their evolution also is influenced by

the spin multiplier x12.

For such a description, the initial vectors mi are

given by the formulas

m1 ¼ cos u0e1 þ sin u0e2;

m2 ¼ � sin u0e1 þ cos u0e2; 3 ¼ e3

ð20Þ

where /0 is the initial angle that vectors mi form with

vectors ei of the reference direction.

In his relative work, Rubin simulated the plastic

response in simple shear for various values of the pair

/0 and x12. In his analysis, he has shown that the shear

stress T12 is slightly influenced by these values, whereas

the normal stresses T11 and T22 are strongly dependent

on /0 and x12. Rubin also concluded that the evolution

of angle / is saturated in special directions, strongly

influenced by x12.

Taking into account these observations, it seems

inappropriate to apply this description in the case of an

initially isotropic-plastically anisotropic material.

To overcome this inadequacy, in the simulation

procedure all possible initial orientations of vectors mi

should be taken into account and the total stress could

be obtained by summation of the result for each

separate calculation. This means that the macroscop-

ically isotropic material may be divided into various

regions, each one with its own orientation. Assuming

further that these regions deform to the same amount

of strain, the overall stress will be the sum of each

individual stress. To avoid this tedious procedure, an

assumption has been made in the present work, where

a specific initial value for angle /0, expressing a mean

value of all possible orientations, combined with a

specific value for spin coefficient x12, can be selected as

material parameters to simulate the experimental

results. The choice of these parameters has been made

by trial and error in the simulation procedure, by

demanding saturation values for the normal stresses up

to large strains.

It is worthwhile to notice that in our simulation,

shear stress T12, as also in Rubin’s original work, is

actually not seriously affected by angle /0, in contrast

to the normal stresses T11 and T22 which are strongly

dependent on angle /0, exhibiting oscillation at high

strains beyond yield. These oscillations disappear by a

proper choice of parameters /0 and x12, certifying this

way the validity of our assumption.

If the set of the above equations, constituted from

the relations (14), the two flow rules (16), (19) for the

quantities Dp and Wp, and the constitutive Eq. 17 for

the deviatoric stress tensor T0 , is accomplished with an

expression for the functional form Cp, will be obtained

a complete plastic description for large simple shear

deformation. This description can be applied in the

case where material develops isotropic elasticity at the

beginning, but it can emerge directional plastic

response after that.

Ongoing this description however our contribution

will be attentive on two modifications of the above

presented analysis. The first one is related with the

hyper-elastic constitutive equation of stresses in such a

way accomplished with the rate dependence of yield

phenomena at high temperatures. The second one is

linked with a particular form of function Cp, and

supported with a physical assumption for mechanism

which takes place inside materials under plastic defor-

mation.

Three-dimensional, non-linear, rate dependence

equation for stresses

In the case of material forming processes at high

temperatures, the plastic behavior of large deforma-

tions is attended with intense non-linear time

depended phenomena.
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When uniaxial loaded is proceeded, the assumption

of strain-hardening hypothesis employs the stress

dependence of creep component with a power law

form. The related description of such a process

constitutes a helpful tool for obtaining a three dimen-

sional rate dependence equation for stresses [14].

Taking into account the Cayley–Hamilton theorem

applied to stresses, an exponential form of the devia-

tory stress tensor can be furnished as follows:

ðT0vÞ
n ¼ pnðI2; I3Þð0vÞ

2 þ qnðI2; I3ÞT0v þ rnðI2; I3ÞI ð21Þ

where pn, qn and rn are polynomials in the invariants I2,

I3 given by the relations,

I2 ¼
1

2
T 0ijT

0
ij;3¼

1

2
T 0ijT

0
jkT 0ki; while I1 ¼ T 0ii ¼ 0 ð22Þ

In the ensuing discourse we will attempt to extrap-

olate the uniaxial exponential form of stress depen-

dence to the three dimensions. In this regard we

employ the deviatory of the symmetric part of the

velocity gradient tensor D0m combined with the stress

tensor T0v as follows:

D0m ¼ AðapnðI2; I3ÞðT0vÞ
2 þ bqnðI2; I3ÞT0v þ grnðI2; I3ÞÞI

ð23Þ

where A, a,b,g are combined constants. If we notice

that trD0m ¼ 0, and neglect the effect of the third

invariant I3 for all values of n, then polynomials pn

are vanishing, given that they are proportional to

I3 as can be proved with recursive calculation of

exponential forms of deviatory tensor. Taking this

observation into account we can assume a simple form

of dependence from the invariant I2 via the relation

qn = I2
n, where n is a non-negative integer. Considering

these simplifications we obtain a simple form for the

symmetric part of the velocity gradient under constant

stress as follows:

D0m ¼ AIn
2 T0v ¼ 0; 1; 2; 3; . . . ð24Þ

Solving Eq. 23 for T0v, we immediately obtain

T0v ¼
D0m
AIn

2

; I2 ¼
1

2
T0v � T0v ¼

0
m �D0m
2A2I2n

2

ð25Þ

The inversion is not complete until we express on

the right side of Eq. 25a in terms of a function of the

tensor D0m. Thus we use these equations to define the

following expression:

K2 ¼
1

2
D0m �D0m ð26Þ

which will be recognized as the second invariant of the

deviator tensor D0m. Now going back to Eq. 25 and

introducing K2 as given above, we obtain after solving

for I2

I2 ¼ A�2=2nþ1K
1=2nþ1
2 ð27Þ

Finally, eliminating I2 from Eq. 25 by means of Eq.

27 we obtain after simplification

T0v ¼ A�1=2nþ1K
�n=2nþ1
2 D0m ð28Þ

We have thus obtained a useful inverted form of a

three-dimensional stress component depended from

the deformation rate. Assuming that this viscous stress

is developed in parallel with an hyperelastic stress

component given by Eq. 17, a non-linear dependence

from the deformational rate of the total stress will be

resulted

T0total ¼ Gðmr �mr �
1

3
mrrIÞ þA�1=2nþ1K

�n=2nþ1
2 D0m

ð29Þ

This expression can be easily applied in the case where

D0m is not varied in respect of time during deformation,

however in our case the evolution equations for the

triad of vectors mi result to a strong time dependence

of the velocity gradient tensor at initial deformation

becoming almost constant at large stretches, so Eq. 29

could only be applied to describe the rate effect at

large deformations. To overcome this deficiency, an

alternative description will be adopted. In the sequel

we will assume a linear dependence of viscous stress

from deformational rates. In this case a superposition

principle can be established. Using a relaxation

function Y(t) = C exp (–t/te) with a relaxation time

constant te, we can construct a corrotational integral of

Jaumann type for the viscous stress T0v as follows:

T0v ¼
Z t

0

Wðt � t0ÞQt
t0 �D0m � t0

t dt0 ð30Þ

where Qt
t0 is the material matrizant as has been defined

by Coddard and Chester [15] to obtain a three

dimensional rheologigal model satisfying the objectiv-

ity of deviatoric stress tensor T0v under a superposed

rigid body rotation.

If the anti-symmetric part Wm of the velocity gradient

tensor Lm is taken into account as the rotational rate of
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the superposed rigid body motion, the definition of

material matrizant is given according to Ref [15] by the

form,

DQt
t0

Dt
¼Wm �Qt

t0 ;
Qt

t0

Dt
¼ �Qt

t0 �Wm ð31Þ

with

Qt
t00 ¼ I whenever ¼ t0:

Since Wm is anti-symmetric the material matrizant

satisfies the property [15],

½Qt
t0 �

T ¼ ½tt0 �
�1 ¼ ½Qt

t00 �

Hence the tensor Qt
t0 can be interpreted as an

orthogonal transformation.

Following Eq. 14, tensors D0m;Wm can be numer-

ically calculated for each time step, so the material

matrizant tensor Qt
t0 can also be obtained numerically

at every integration step using Eq. 31. By matching

now the results of Eqs. 17 and 30 the total deviatoric

stress is given from the expression,

T0total ¼ Gðmr �mr �mrrI=3Þ

þ
Z t

0

Wðt � t0Þtt0 �D0m �Qt0

t dt0
ð32Þ

The functional form controlling the rate of plastic

deformation

Following Rubin’s analysis for the way in which plastic

relaxation phenomena are described in respect to

reference configuration, we remind the abundance of

intermediate configuration necessary for the polar

decomposition of the deformation gradient tensor F.

In this contain, we are confident to suppose that plastic

deformations coexist and accumulated moderately with

the corresponding elastic ones, before they emerged

macroscopically. This accumulation is taken part

around a large number of anomalies randomly distrib-

uted into the volume of the deformed material. At this

stage we will make use of the concept of distributed

strain energy or equivalently of strain distribution

around each anomaly responsible for plastic emer-

gences. This idea has been applied successfully in

amorphous materials as thermoplastic polymers [16,

17]. In amorphous materials the origin of random

strain distribution into the deformed volume element

was the concept of free volume, which as is known very

well from polymer behavior, constitutes the seed for

plastic emergence into the bulk under deformation.

What is novel in the case of polycrystalline metals is

the fact that these disturbances are usually constituted

from the various kinds of dislocations emerged inside

the crystal. The total applied deformation will conse-

quently be distributed inhomogeneously around each

separate dislocation, in a way related with both, the

special features of each anomaly, and the relative

orientations of slip planes that are associated with the

directions of applied stresses.

When the distributed elastic energy around each

dislocation reaches a critical value, a non-reversible

transition takes place, which manages the emergence

of plastic deformations. If we accept that each one of

these transitions proceeds with a constant rate, then

the macroscopic plastic deformations will come out

with a rate proportional to the number of simulta-

neously appeared transformations. Ongoing we sup-

pose that the necessary strain which is accumulated

around the i-dislocation randomly selected from the

statistical ensample, obeys a normal Gaussian distri-

bution [16, 17] determined from a mean equivalent

strain ~l, and a standard deviation ~s. Then the

distribution density function in respect to equivalent

strain ~ei as a random variable will be given by

f ð~eiÞ ¼
1

~s
ffiffiffiffiffiffi
2p
p � 1

2

~ei � ~l
~s

� �2
" #

ð33Þ

The application of an equivalent strain field ~e,

applied with an equivalent strain rate _~e, activates the

process of nucleation, growth and merging of plastic

transformations. The fraction of such processes that

have enough activation energy to attain a new non-

reversible state is given by the probability

Pð0\~ei\~eÞ

¼ Fð~eÞ � Fð0Þ ¼ 1

~s
ffiffiffiffiffiffi
2p
p

Z ~e

0

exp � 1

2

~ei � ~l
~s

� �� �
d~ei

ð34Þ
Making the further assumption that the rate of

plastic deformation Cp is proportional to the fraction

of plastic transformations that have achieved a non-

reversible state, and this transition takes place with an

average rate _k for every plastic transformation then we

have

Cp ¼ _kPð0\~ei\~eÞ ¼ _k
1

~s
ffiffiffiffiffiffi
2p
p

Z ~e

0

exp � 1

2

~ei � ~l
~s

� �2
" #

d~ei

ð35Þ
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The value of _k can be estimated, assuming that at

the yield point,that is, at the moment where the

equivalent strain ~e, is equal to the mean value ~l,

the rate of plastic deformation Cy
p will become equal to

the applied equivalent strain rate _~e

Cy
p ¼ _~e ¼ _k

1

~s
ffiffiffiffiffiffi
2p
p

Z ~l

0

exp � 1

2

~ei � ~l
~s

� �2
" #

d~ei ¼ _k
1

2

ð36Þ

then

Cp ¼
2 _~e

~s
ffiffiffiffiffiffi
2p
p

Z ~e

0

exp � 1

2

~ei � ~l
~s

� �2
" #

d~ei ð37Þ

In this expression we can endorse now the most

common type of hardening which usually accompanies

plastic deformation of metals, i.e. the isotropic and

kinematic hardening as well. As far as isotropic

hardening conveys, the value of parameter ~s is

adequate to describe the corresponding effect, given

that it is strongly related with the broad or narrow

distribution of function (36). Consequently we can

state, that whatever an intense isotropic hardening

emerges during plastic deformation, a broad distribu-

tion function should be endorsed calibrated from a

corresponding value of ~s. On the other hand, kinematic

hardening will be controlled by the evolution of the

equivalent mean value of strain ~l. When plastic

deformation proceeds and the development of some

dislocations attached to a kind of some unsurpassed

border, a larger value of ~l, should be endorsed to

describe the new state of yield surface for the evolution

of plastic deformation. A simple rate equation describ-

ing this evolution starting from an initial value ~l0, and

saturated at a value ~ls can be written as follows:

_~l ¼ að~ls � ~lÞ ð38Þ

where a is a constant controlling the rate of kinematic

hardening. In the case of cycling loading, different

values for constants ~ls; ~l0 should be adopted under

reversed loading to describe the Bauschinger effect.

Experimental verification and discussion

The set of constitutive equations presented above has

to be tested by experimental evidences, and compared

with previous theoretical works. The special applica-

tion of this theoretical model on the plastic behavior of

materials under simple shear deformation, constitutes

a decisive examination of the made assumptions. Such

a trial is due to the fact that simple shear tests exhibit

valuably most of the related phenomena accompanying

the plastic behavior. Such phenomena concern the

anisotropic plastic response, orientational hardening,

rate and temperature dependence, etc. Special inter-

esting however displays the sign variation of normal

stresses before steady state is saturated under large

deformations. The widely used experimental tests for

obtaining such deformational conditions are torsion

tests because large strains can be readily imposed

owing the necessary geometrical and mechanical sta-

bility. Such type of experiments had been executed

repeatedly from many researches [18] in a lots of

metals and alloys, where interesting phenomena of the

plastic behavior have been recorded at various tem-

peratures. For the requirements of this article however

we will be concentrated on the work of Montheillet

[13] where systematic torsion tests have been executed

on various materials for a wide range of temperatures

and deformational rates. Results of such experiments

have been used from many researchers as representa-

tive examples for the verification of their theoretical

approaches. Dafalias and Cho [12] have tested system-

atically the assumption and the special task of the

concept of plastic spin under large viscoplastic defor-

mation, which has been introduced and theoretically

founded by Dafalias in previous works [10, 11]. The

target of this article is to test and compare the

theoretical description of plastic behavior introduced

by Rubin [2] with the proper comprehensiveness

presented above, and consequently we will present

the same sequence of experimental results contained in

the work of Montheillet as used by Dafalias and Cho

[12].

The first approach concerns the description of

plastic behavior of Al under 200 �C, where torsion

tests have been recorded an axial force corresponding

to a normal stress of a representative element under

shear deformation in three different strain rates

imposed.

Figure 1a presents the response of compressive

normal stress measured for Al at 200 �C for three

different strain rates. The corresponding curves are

incorporated in terms of true stress–strain results by

Dafalias and Cho [12] after the original experimental

work by Montheillet et al. [13]. Figure 1b shows the

corresponding theoretical plots as have been calculated

from the set of equations presented above and Fig. 1c

presents the same plots obtained by the solution of the

constitutional equations based on the concept of plastic

spin [12]. The set of the corresponding differential

123

J Mater Sci (2007) 42:5815–5825 5821



equations are solved numerically by programming

using the soft work ‘‘Mathematica-4’’ by Wolfram

[19]. The results shown in the c parts of these figures

are obtained by solving the corresponding equations of

Ref [12] by the same numerical method as in our set of

equation has been done. By this process we have assure

the same accuracy of the applied method, on the other

hand the results obtained by our approach have been

compared with the corresponding plots of relative

reference [12]. The inclusive coincidence, that is

observed from this comparative study, verifies the

validity of our approach.

The values of material constants used for the

calculation of these results are contained in Table 1.

For most of the simulations, plastic relaxation is taken

to be anisotropic in the sense that the values of bij are

not equal to unity. The determination of these param-

eters has been based on the different influences which

take part by matching them in three separated groups.

The first group ðG; ~l;~sÞ is related with original features

of plastic behavior, yield stress, saturation values of r 12,

isotropic and kinematic hardening. The second group

(bij,x12) is monitored from the orientational hardening

and the influence of the oscillatory behavior of normal

stresses. The third group of parameters (C, te) deter-

mines the effect of strain rate and is obtained by

simulating the relative position of saturated values at

large strains for shear and normal stresses as well.

Figure 2a–c, show the corresponding experimental

and theoretical results of normal stresses for Cu tested

at 300 �C for three different rates of deformation.

Material parameters are also contained in Table 1. The

theoretical results of Fig.2c, that are obtained by the

solution of the plastic spin theory, by Dafalias and Cho

[12], exhibit an inversion in the saturated values of

normal stresses for strain rates 0.5 and 0.05 s–1 corre-

spondingly, that is not obtained in the experimental

data or the theoretical predictions of Fig. 2b.

Figure 3a, is drawn from the torsion tests of a-Fe at

elevated temperature of 800 �C. In this figure, shear

stress is plotted for a strain rate 0.5 s–1 and normal

stresses for three different strain rates, 0.007, 0.05,

0.5 s–1. The corresponding theoretical results are

shown in Fig. 3b and c. The theoretical curve of shear

stress of Fig. 3b is very close to the corresponding

experimental, while the theoretical prediction of

Fig. 3c exhibits a deviation of the order of 20%.

Fig. 1 (a) Experimental axial stress–strain curves for Al at
200 �C and different strain rates after Montheillet et al. [13]. (b)
Simulation of the experimental results for Al at 200 �C, with the
proposed model. (c) Simulation of the experimental results for
Al at 200 �C, after Cho and Dafalias [12]

Table 1 Model constants used for the simulation of experi-
mental results (Figs. 1–3)

Model constants Al (200 �C) Cu (300 �C) a-Fe (800�C)

G (MPa) 25 27.5 28
~l 0.5 1.0 0.1
~s ¼ ~l=3 0.5/3 1.0/3 0.1/3
b11 = b22 0.4 0.7 0.6
b12 = b13 = b23 = b33 1 1 1
/0 (rad) 0.863 0 0
x12 3 –6.5 –8
x13 = x23 0 0 0
C (MPa) 5 0.5 0.1
te (s) 100 1 5
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Figure 4a–c are drawn for the experimental results

and theoretical approximations of normal stresses at

various temperatures for Al under a certain strain

rate deformation of 1/s. The values of the material

parameters used at different temperatures are

included in Table 2. As can be noticed from this

table, simulating the temperature dependence,

among the parameters which have to be changed,

are the shear modulus and constant x12 which

controls the rotation rate and the role of material

spin in aligning the triad of vectors mi with the

principal directions of D.

Figure 5a and b reproduces the simulations obtained

at the beginning of this section with the proposed

model for axial stress–strain curves in Al and Cu,

included at 1a and 2a plots. These results however are

compared with simulation obtained for isotropic

response where all values of bij are taken equal to

Fig. 2 (a) Experimental axial stress–strain curves for Cu at
300 �C and different strain rates after Montheillet et al. [13]. (b)
Simulation of the experimental results for Cu at 300 �C, with the
proposed model; (c) Simulation of the experimental results for
Cu at 300 �C, after Cho and Dafalias [12]

Fig. 3 (a) Experimental stress–strain curves for a-Fe at 800 �C
and different strain rates after Montheillet et al. [13]. (b)
Simulation of the experimental results for a-Fe at 800 �C, with
the proposed model. (c) Simulation of the experimental results
for a-Fe at 800 �C, after Cho and Dafalias [12]
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unity. As is released from such a comparison the two

descriptions are coincident at initial deformations.

Conclusions

One of the most widely accepted constitutive plasticity

theories capable of describing all the complementary

effects of yielding, such as rate effect, and each one of

the hardening features, namely isotropic, kinematic,

distortional and orientational hardening is the one

developed by Dafalias and Cho [12], that allows an

independent chose of plastic spin expressions, followed

by a specific flow rule for each internal variable.

Fig. 4 (a) Experimental axial stress–strain curves for Al at
different temperatures after Montheillet et al. [13]. (b) Simulation
of the experimental results for Al at different temperatures with
the proposed model. (c) Simulation of the experimental results
for Al at different temperatures after Cho and Dafalias [12]

Table 2 Model constants for the simulation of the experimental
data of Fig. 4

Model
constants

Al
(20 �C)
(0.007 s–

1)

Al
(100 �C)
(0.05 s–1)

Al
(200 �C)
(0.05 s–1)

Al
(300 �C)
(0.05 s–1)

Al
(350 �C)
(0.05 s–1)

G (MPa) 80 50 25 5 3
x12 3 3 3 2 2
x13 = x23 0 0 0 0 0
C (MPa) 5 10 15 20 20
te (s) 100 100 40 20 20

Fig. 5 (a) Plots showing the solution of constitutive equations
for axial stress–strain curves of Al at 200 �C under loading with
0.05 s–1 strain rate. The isotropic behavior has been calculated
with material constants bij = 1 (i,j = 1,2,3), and the anisotropic
response with b11 = b22 = 0.4 (b12 = b13 = b23 = b33 = 1). (b)
Plots showing the solution of constitutive equations for axial
stress–strain curves of Cu at 300 �C under loading with 0.05 s–1

strain rate. The isotropic behavior has been calculated with
material constants bij = 1 (i,j = 1,2,3), and the anisotropic
response with b11 = b22 = 0.7 (b12 = b13 = b23 = b33 = 1)
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In this work a new three-dimensional viscoplastic

model based on the plasticity theory developed by Rubin

[2, 3] is presented. The proposed constitutive model

anticipates the contribution of the main features of

plastic behavior, such as yielding, rate effect, isotropic

and kinematic hardening, through a new approximation

of the constitutive equation with a viscoplastic term, as

well as a new consideration of the functional form of the

rate of plastic deformation. A high accuracy simulation of

torsion experimental data at various rates and temper-

atures for a variety of materials, as well as the sign

inversion of normal stress has been postulated. More-

over, the required number of parameters is minimized in

respect to other theories, while all parameters used and

their magnitudes have a physical significance.
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